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Abstract-A new continuum damage mechanics (COM) based model for describing cyclic creep
behavior of selected engineering materials under complex thermal-mechanical loading conditions
is incorporated into a finite element computer code for cyclic creep fracture analysis. A mixed
explicit-implicit (EI) algorithm was used to deal with the evolution ofcreep damage in the material.
Three case studies were conducted on a cracked thin panel made of 316L stainless steel. Loading
conditions for these case studies correspond to static, cyclic without dwell time and cyclic with dwell
time, respectively. Mechanical load and temperature changes applied in phase with each other are
considered in this investigation. Numerical results indicate that both the load dwell time and the
loading/unloading cycling process have profound inlluence on subsequent creep behavior.

NOMENCLATURE

K stress intensity factor
liK stress intensity factor range
J Jintegral
C* C* parameter
Q* Q* parameter
CTOD Crack Tip Opening Displacement
0'net net section stress
(1ij stress tensor component
T absolute temperature
D damage parameter
R ij internal stress tensor
R Boltzmann constant
eO, e)r creep strain, creep strain tensor
( .) time derivative operator
t time
Si/ deviatoric stress component
(j damage equivalent stress
R effective internal stress in von Mises sense
(j effective stress in von Mises sense
R, current maximum internal stress
R:; initial maximum internal stress
R", Rij internal stress during unloading
R', R;j residual internal stress before unloading
D,. creep damage rate
liDr fatigue damage increment
litd length ofdwell time
0' /I hydrostatic stress
liep plastic strain range in load cycling process
E Young's modulus
v Poisson's ratio
Q activation energy
N number of load cycles
0'. creep threshold stress value
of/oN fatigue damage rate
A, n, m, B"p, C t , C2 , ro, IX, p, B2 , k, CO, B material constants dependent upon temperature
A" A 2, B 3, B4 material constants
y constant in numerical one step integration formulae
COM Continuum Damage Mechanics
EI Explicit-Implicit
LCF Low Cycle Fatigue
HTLCF High Temperature Low Cycle Fatigue.
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INTRODUCTION

In pursuit of thermal efficiency, key components in electric power generation,
aerospace, and petrochemical plants are exposed to high temperature environment with
high stresses. Under the working conditions, these components experience significant creep
deformation. Creep damage is one of the prominent mechanisms leading to the failure of
these components.

Large scale investigations in creep mechanics in general and creep fracture mechanics
in particular had been conducted in the past three decades, and much progress had been
achieved [Boyle and Spence (1983), Rabotnov (1969), Odqvist (1980), Leckie (1980) and
Hsu (1986)]. Generally speaking, besides the conventional mechanics way of describing
creep behavior, two schools of thought in treating creep-related problems have emerged:
the parametric approach and the CDM approach.

The parametric approach is an extension of the conventional fracture mechanics
framework to creep analysis [Nicholson and Formby (1975), Landes and Begley (1976),
Smith et al. (1989), Leeuwen (1977) and McEvily and Wells (1973)]. The characterizing
feature of the parametric methods pertains to the use of one single control parameter which
the formulation of decision is based on, such as the stress intensity factor, K, the stress
intensity factor range, !J.K, the J integral, the C* parameter [Sexena (1980) and Nikbin et
al. (1976)], the Q* parameter [Yokobori and Sakata (1979) and Yokobori and Yokobori
(1988)], the crack tip opening displacement, CTOD, and the nominal stress or the net
section stress, anet , etc. Parametric approaches achieved certain degrees of success in cor­
relating creep data with one of the parameters for particular materials under certain
conditions. However, most of the parameters are valid only for the steady-state creep
deformation. This is obviously inadequate because creep rupture depends on all stages of
creep deformation, including the primary and tertiary stages. For cases involving complex
temperature and stress histories, the creep problem becomes very complicated. Additional
complexities are the load cycling effect, the load dwell time effect and the interaction between
creep and high temperature low cycle fatigue (HTLCF). One single parameter cannot
possibly take all these effects into account. The applicability of parametric approach for
creep-fracture analysis is thus limited.

The CDM approach involves internal state variables such as the damage parameter
and the internal stress in describing the current state of the material and its capacity to
undertake the applied load. These variables are introduced on the basis of conventional
mechanics. The damage parameter is an abstract indication of material deterioration due
to permanent deformation. Many different researchers, such as Gong and Hsu (1991),
Leckie and Hayhurst (1974), Kachanov (1958), Rabotnov (1969), Krajcinovic and Fonseka
(1981), Chaboche (1988), Lemaitre (1985), Miller (1976), Chow and Wang (1987), Mura­
kami (1983), etc., proposed different CDM models to describe material behavior under
different conditions. Some of these proposed models are too complicated in form to be of
practical use. Others require a large number of material constants which are usually difficult
to obtain in practice. Also, only a few of the models take into account critical factors such
as the dwell time effect, the interaction between creep and HTLCF and the load cycling
effect in the cyclic creep fracture analysis.

Recently, the authors proposed a CDM based model for describing creep behavior of
selected engineering materials subjected to complex stress and temperature histories. This
model can also describe load cycling effect, load dwell time effect and the interaction
between creep and HTLCF [Sun et al. (1992)]. This present paper is concerned with the
implementation of this model into an existing finite element program, TEPSAC [Hsu
(1986)], and the stress analysis results of three case studies on cracked thin panel made of
316L stainless steel.

Computations involving CDM models for creep analysis are usually difficult due to the
high nonlinearity and mathematical stiffness of the governing equations. The mathematical
stiffness comes from the fact that the CDM models for creep analysis are usually written
in a rate form. The creep strain rate and the damage rate are all functions of the current
stress, a, temperature, T, and state variables such as the damage parameter, D, and the
internal stress, R. Hence, slight perturbations in a, T and the state variables can cause
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relatively large variations in both the creep strain rate and the damage rate. This imposes
very small time increments in order to maintain accurate and stable progress ofthe solutions.

It is thus not surprising that many researchers were involved in the study ofalgorithms
for tackling the mathematical stiffness of nonlinear problems. Some improved algorithms
have been proposed [Chen and Hsu (1988), Hughes and Liu (1978), Cormeau (1975) and
Liu et al. (1982)]. Chen and Hsu proposed a mixed explicit-implicit (EI) algorithm for
creep stress analysis. This algorithm can achieve both economical computation and yet
ensure numerical stability. In this paper, the proposed model is incorporated into a finite
element program using this mixed EI algorithm.

The breakable element algorithm [Hsu (1986)] is adopted in this paper to simulate
crack growth. The Mroz hardening rule in conjunction with the multiple yield surface
theory [Mroz (1967)] is utilized to account for the progress of yielding in the analysis.

THEORETICAL BACKGROUND

Constitutive equations
A new CDM based model was proposed to describe creep behavior of selected engin­

eering materials under cyclic thermal-mechanical loading conditions (with both load holding
time and load dwell time). The model is the synthesis of the works of Gong and Hsu (1991),
Degallaix et al. (1983), Lemaitre (1985), Chaboche (1988) and Plumtree (1977). The
mathematical form of the model is presented below:

and:

for unloading:

and:

(
u-R )n s.

'C - A --- --!.{
Ilij - I D -,-co a

[
2 (a )2J1/2

U=U 3(I+v)+3(1-2v) aH
,

(I)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

In this model, the first six equations, eqns (1-6) are used to describe the creep behavior
of selected engineering materials, including the accumulation of damage and the internal
stress histories. These equations are mainly an extension of Gong and Hsu's uniaxial model
to the three dimensional case. Equation (6) defines a generalization ofthe damage equivalent
SAS 31: 7-F
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stress, According to Lemaitre, who first introduced this concept, the damage equivalent
stress in CDM analysis is the counterpart of the von Mises effective stress in plasticity
analysis. Equation (7) is used to calculate the damage caused in the load cycling process.
This is an adaptation of the Degallaix's thermal activation model. In this way, the damage
caused by the LCF process is calculated cycle by cycle. Instantaneous response such as
strain hardening and softening is accounted for. The damage produced by LCF and creep
deformation are introduced in a mutually reinforcing manner as expressed by eqn (8).

Time-integration scheme
Generally speaking, there are two classes of commonly used one-step integration

algorithms for creep computation: explicit and implicit algorithms. Implicit algorithms
tend to be numerically stable, permitting larger time steps, however, the computational cost
per time step is substantial. Explicit algorithms are simple in form and involve inexpensive
marching strategies, but numerical stability requires that a very small time step be employed.
The selection of the time-integration algorithm depends on whether the short term or long
term response is of interest. There are some problems for which implicit algorithms are
very efficient and others for which explicit algorithms are very efficient. However, in large
scale engineering systems, the many different finite element types and local mesh refinement
often result in neither class of integration algorithms being very efficient by itself.

To circumvent these difficulties, methods have been developed in which it is attempted
to simultaneously take advantage of the benefits of both types of algorithms. The mixed
explicit-implicit (EI) algorithm originally proposed by Hughes et al. (1978) and Liu et ai,
(1982) for structural dynamics and nonlinearity has been applied to creep stress analysis
[Chen and Hsu (1988)]. This has led to significant computational advantage.

When the mixed EI algorithm is used in a finite element analysis, the mesh is partitioned
into an implicit element group and an explicit element group. Within each group, a separate
integration algorithm is adopted. Different time stepping can be used at the same time for
each element group. In the implicit group, a limited Taylor series expansion technique is
introduced to evaluate the rates of creep deformation and certain internal variables at the
end of the time step.

Finite element equations
In finite element analysis of the thermal-elastic-plastic response with creep, the fol­

lowing decomposition is usually made:

(9)

where {Ae}, {Aee }, {Aep }, {Aer} and {AeJ are respective total, elastic, plastic, thermal and
creep strain increments. Incremental quantities are used here to linearize the apparent
nonlinear material behavior under combined thermal-mechanical loadings during a time
step At of a load increment. The separation of plastic and creep strain increments is
obviously an artificial one, since they are both related to the dislocation movements within
the material. Many researchers, however, have shown that this assumption is a convenient
and reasonable one [Levy and Pifko (1981)] since a plastic strain increment is associated
with high rates of loading. Hence, the plastic strain component is configured to be time
independent, and is regarded as instantaneous response when the loading process is quick
enough in comparison with the creep process.

In this contribution, the thermal strain and creep strain are treated separately. Since
the temperature change is in-phase with the application of the mechanical load, i.e. changes
rapidly relative to the long holding time and the dwell time of the loads, it is reasonable to
treat the thermal effects as instantaneous and to assume that no creep can occur during the
thermal-mechanicalloadingjunloading span of time. The well-established thermal elastic­
plastic theory [Hsu (1986)] is used for the analysis of the instantaneous response.

When creep deformation is included in the thermal elastic-plastic finite element analy­
sis, the stress increment during a time step At is given by:
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where [Cep] is the thermal elastic-plastic matrix.
By introducing the strain-displacement relation:

{AE} = [B]{Au}

the stress increment is calculated using:

and the incremental equilibrium during a time step is given by:

1. [BY{Au} dv = {AF}.
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(10)

(II)

(12)

(13)

In practice, the evaluation of {Au} is first performed and the subsequent finite element
solutions depend on whether the element in question belongs to the explicit or implicit
group.

Finite element modelling ofCDM
In the implementation of the mixed (EI) algorithm, the finite element mesh is par·

titioned into two groups: the explicit element group and the implicit element group. Inte·
gration in each of the two element groups is performed independently.

Explicit element group. The increments of creep strain {Ae,,}, damage parameter AD and
internal stress {AR} occurring in a time interval At = tn+ ,- tn are evaluated as:

{Ae,.} = {B~}At,

AD = DnAt,

{AR} = {Rn}At,

(14)

(15)

(16)

where the superscript n denotes the time step number. The stress increment can then be
expressed by substituting eqn (14) into eqn (12) as follows:

{Au} = [Cep]([B]{Au} - {B~}At).

The governing finite element equation now becomes:

(17)

(18)

where {AF} is given in eqn (13). Hence, in order to trace the creep response, simple update
of the right hand side is performed and the solution is achieved by marching in time. The
matrix Jv[BY[Cep][B] dv is evaluated only at the first time step.

Implicit element group. According to the proposed model, eqns (1-8), we have:

{B"} =f,({U}, {R},D)

{R} =f2({U},{R},D)

D =f3({a}, {R},D).

(19)

(20)

(21)
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One-step integration formulae used to calculate the increments ofcreep strain, damage
parameter and the internal stress from this set of rates are then given by the following finite
difference equations:

{AR} = [(I-y){Rn } +y{Rn+ dlAt.

(22)

(23)

(24)

The creep strain rate {i:~+ I} and the two state variables: Dn + 1and {Rn+ I} at the time
point tn+ I can be approximated by a limited Taylor series expansion as:

{e~+ I} ~ {e~} + [Hd{AO"} + [Hz]{AR} +{H3}AD,

Dn+ 1 ~ Dn + {Gd{AO"} + {Gz}{AR} +G 3AD,

{Rn+ I} ~ {Rn } + [Ed{AO"} + [Ez]{AR} + {E 3}AD,

(25)

(26)

(27)

where [Hd, [Hz]' {H3}, [Ed, [Ezl, {E3}, {Gd, {G z}, G3 are transformation matrices,
vectors and coefficients used in the derivation.

Thus, by substituting eqns (23-27) into eqn (22), we obtain the incremental creep
strain components. Substituting the outcome into eqn (10), we obtain the incremental stress
components. Again, using eqn (10) and expressing incremental equilibrium leads to the
governing finite element equation with the new model incorporated, which has the following
form:

(28)

where {A d is a vector used in the derivation, and [C:;'l is the modified thermal elastic­
plastic matrix.

The effect of LeE damage. When the load is applied cyclically during creep deformation
process, the effect of LCF damage should be accounted for in the creep analysis [yokobori
and Sakata (1979) and Murakami and Sanomura (1986)]. In the implementation, this is
achieved by calculating the LCF damage increment according to the plastic strain range
within a load cycle [Degallaix et al. (1983)], and adding its amount to the current total
accumulated damage.

Another important effect of the load cycling process on damage development is the
redistribution of the stress field within the material. This stress redistribution has significant
influence on subsequent creep evolution and damage development [Leckie and Hayhurst
(1974) and Chen (1988)]. Also, when cracks are present in the material, stress redistribution
reduces the degree of severity of the stress concentration around the crack tip region. Since
the damage development and the creep evolution are all based on the current stress level,
redistribution of the stress field would alter the development of damage and creep strain
evolution, and eventually the failure of the overall structure.

The effect of load dwell time. During the load dwell time of the cyclic creep process, the
material experiences certain microstructural changes. And also because of the permanent
deformation which has already occurred within the material, when the load is exerted to
the material again, the new creep strain rate in effect is no longer the same as the one before
the load has been removed. This is referred to as the cyclic creep acceleration or cyclic creep
retardation in literatures [Lorenzo and Laird (1984) and Gong and Hsu (1991)]. In the
current implementation, this is reflected through the change of the maximum internal stress
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which represents the material's resistance to further creep deformation. Being a function of
dwell time, the maximum internal stress affects the rates of the evolution of the internal
stress and hence the damage parameter and the progress of creep deformation.

Interaction between creep and LeE. It has been found by many researchers that when
the load is applied cyclically during the creep deformation process, the gradual material
deterioration and the final failure of the material is caused not only by the creep damage
and the LCF damage themselves, but also by the interaction between them [Yokobori and
Sakata (1979) and Murakame and Sanomura (1986)]. In the present research, this is
achieved through the summation of the damage caused in the creep deformation process
and the damage caused in the LCF process within the same load cycle.

PARAMETRIC INVESTIGATION

The proposed CDM based model with the mixed EI algorithm is incorporated into
the finite element program, TEPSAC, for thermal elastic-plastic stress analysis with creep.
Before starting with the parametric study, the finite element implementation is checked
against one-dimensional creep test results produced from specimens made out of 316L
stainless steel [Gong and Hsu (1991)]. Figure I shows a good agreement with the static
creep tests conducted at constant loadings of 165, 193,221 and 231 MPa under a constant
temperature of 650°C. Correlations with the creep strain results from a uniaxial bar sub­
jected to a constant temperature of 650°C and cyclic mechanical load of 221 MPa is shown
in Fig. 2, in which good agreement is observed. Having validated the model for simple
configuration, the investigation of more complex two-dimensional creep problems is
reported here.

For the three case studies conducted in this investigation, the material is 316L stainless
steel, and the necessary input material constants are listed in Table I. The loading conditions
for the three case studies are shown in Fig. 3. The specimen is a thin panel with a center
through crack. The geometry, dimensions of the panel and the mechanical loading pattern
are illustrated in Fig. 4. The detailed finite element mesh around the crack tip region is
shown in Fig. 5. Plane stress and constant strain elements are used in the analysis. A total
of 199 elements and 166 nodes are used, and no special provisions are taken at the crack
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Fig. 2. Cyclic creep strain development of 316L stainless bar at 650°C, 221 MPa.
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tip. To account for the relative high gradients of stress and strain in the crack tip region,
very fine elements are deployed in the crack tip area and the expected crack extension path.
In accordance with other CDM analysis, the crack extension criterion is assumed to be
when the extrapolated damage parameter in the crack tip is equal to a critical value
[Lemaitre (1985)]. In this analysis, the critical value is selected to be 0.98.

Case I, static creep analysis
The case study was conducted to show the proposed model in describing static creep

behavior. Without the interruption of the load cycling process and the load dwell time, it
takes a longer incubation time for the crack to propagate.

Case 2, cyclic creep without dwell time
This case study was intended to check the importance of damage caused by the load

cycling process during cyclic creep deformation. The load cycling process during creep
deformation was found to be an important factor affecting the incubation time for the crack
to grow and the subsequent crack growth rate, Not only did the load cycling process

Table I. Input material parameters for 316L stainless
steel

2.36 x 10- 15

2.15 X 10- 14

1.18 X 10- 12

5.84
0.711
1.32 x 102

5.6 X 10- 1

1.80 X 10-2

0.88
1.00 x 102

0.6445
0.69 x 10-3

1.624
1.792
4.80 (K cal Mol-I)
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Fig. 3. Loading conditions for the case studies.
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Fig. 4. Thin panel with center crack used for the case studies.
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Crack surface Crack tip

Fig. 5. Detailed FE mesh near crack tip for case studies.

introduce a certain amount of damage to the material directly but it also redistributed the
stress field around the crack tip. This shows the same trend as in a previous analysis [Sun
et at. (1992)]. This effect is essential for accurately assessing the deterioration of material
because of the damage. Ignoring the damage caused by load cycling process in cyclic creep
analysis will significantly over-estimate the life of the material.

Case 3, cyclic creep with dwell time
This case study was designed to monitor the load dwell time effect upon subsequent

creep behavior in addition to the LCF damage effect for a complete cyclic creep analysis.
The load holding time and the load dwell time were selected as 10 h.

OBSERVATIONS AND DISCUSSIONS

Case studies were performed using a new COM based model with a mixed EI algorithm
through finite element analysis. From the three loading conditions, i.e. static loading, cyclic
loading without dwell time and cyclic loading with dwell time, it has been demonstrated
that creep behavior is significantly affected by the profile and history of the applied loads.
The load dwell time effect appears to be less important in comparison with the load cycling
effect.

Both the load cycling process and the load dwell time have certain effects on subsequent
creep evolution and damage development in the material. Furthermore, the incubation time
for crack growth and the subsequent growth rate are also dependent on the type ofloadings.
The load dwell time effect is relatively small in comparison with the LCF influence on the
overall response. However, because the selected duration of the load dwell time is relatively
short (10 h) in this analysis, no conclusive observation could be made at this stage. Further
studies are needed to compare the relative effect of LCF and load dwell time.

The evolution of the damage equivalent stress if in the near crack tip region was
monitored and recorded for each case study because the damage equivalent stress is the
controlling parameter for both creep strain evolution and damage development, its mag­
nitude gives an overall picture of the activity at the crack tip. As the thermal and mechanical
loads were applied to the panel, there was a significant stress concentration near the crack
tip. When the creep deformation took place, the stress concentration became less severe
due to the stress relaxation effect commonly encountered in viscoplasticity analysis. Also,
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Fig. 6. Distribution of the damage equivalent stress near crack tip under static loading condition.

higher initial damage equivalent stress around the crack tip induces faster creep defor­
mations. However, the deformation in the crack tip region is restrained by the surrounding
area in which the creep strain is much lower. Consequently, unloading in the crack tip
region occurs and the damage equivalent stress in the first few elements ahead of the crack
tip drops.

Higher damage equivalent stress causes a larger damage rate. Consequently, damage
in the first few elements ahead of the crack tip develops faster than in the surrounding
elements. As the damage develops, the material becomes softer and less creep resistant.
When the damage accumulates to a certain level, the material becomes too soft to withstand
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Fig. 7. Distribution of the damage equivalent stress ahead of a moving crack tip.
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Fig. 8. Crack extension histories for the three case studies.
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high damage equivalent stress. Mathematically, this means the accumulated damage
approaches a numerical value of unity. Figure 6 shows the evolution of the damage
equivalent stress ahead ofthe crack tip for the static creep case. The evolution of the damage
equivalent stress ahead ofa moving crack tip, as further illustrated in Fig. 7, shows a similar
trend to the Chaboche's analysis results (1988). Figure 8 shows the crack extension histories
for the three different loading conditions. The cyclic loading with both load holding time
and load dwell time appeared to be most damaging. Under such loading conditions, the
incubation time for the crack to propagate is shorter and the rate ofcrack growth is higher.
However, the results under cyclic loading with and without dwell time did not make much
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Fig. 9. Development of the damage equivalent stress under static and cyclic loading conditions.
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Crack surface

I,:,::;::::j : D < 0.02

.. 1.0 > D > 0.05

New crack surface

• : 0.05 > D > 0.02

_ : damaged area

Fig. 10. Damage zone near a crack tip.

difference. Figure 9 shows the evolution of the damage equivalent stress in time in the
crack tip area under both cyclic and static loading conditions. The load cycling process
redistributes the stress field in the crack tip area. The damage equivalent stress under cyclic
loading is always higher than that of static loading. /rhis is essentially the reason why cyclic
loading is more damaging than the static loading. Figure 10 shows the damage pattern
around the crack tip area after the crack tip has made certain advances. The material near
the crack tip experienced severe damage. This area also hosts higher stress. The damage
pattern reported here is quite similar to the results of other researchers [Lemaitre (1985)
and Chaboche (1988)].

Systematic correlations with experimental test results, for both one-dimensional and
two-dimensional specimens subjected to various cyclic loading patterns, will be presented
in another paper.
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